112 research outputs found

    Avatars:A Shifting Interaction

    Full text link
    The intersection of theatre-performance, design, and informatics is a fertile area for a broader understanding of the possible design and interaction between people and avatars in simulated three dimensional information spaces. This paper outlines the theoretical modelling for the visualization of a generic avatar template applicable to information spaces. Such a representation, it is theorised, would indicate semantic and structural meanings between contents of a document collection of an

    Capturing and Utilising Information about Interactions During the Learning Process in 3D Virtual Worlds

    Full text link
    The range of interactions in immersive 3D virtual worlds is increasing as new technologies are integrated with such environments. The increased complexity, however, does not necessarily deliver information on the interaction process specifically to the interacting and/or instructional parties. The challenge is how to extract and utilise information regarding the interaction process between team members in such environments enabling and supportive of the learning process. This paper reports on the application of a visual language in virtual worlds to provide information about the interaction process between team members in a learning context as it unfolds. The process of interaction over a number of weeks between team members, undergraduate design students, is demonstrated through chat logs. The resultant representations are described and commented upon as to their merit in provision of feedback on the interaction process. Reflection in action using shared knowledge products is a key component of the approach

    Communities, Action and Inter--action: A framework for mediated communication exploring service delivery and planning of community care services

    Full text link
    This chapter outlines the conceptual framework, methodology and initial interpretations of a pilot study undertaken by a state government agency and coordinated by the Human Services Network (HSNet). The study, conducted in a rural community in NSW, Australia, approaches the communication between the service delivery and consumer as a dialogue. A dialogue between two parties can be positioned to trace and reflect on: (1) the governmental planning model of service delivery and (2) the community that experiences these services as individuals. Such experiential knowledge can be gained from understandings from a range of client stories that reflect the community interaction with service delivery. The design problem focuses on how to increase the bandwidth for such interactions so that all parties can derive meaning. The long term goal is to position the health service network in a role where such mediation between parties can: (1) be explicitly and implicitly linked to action that affects service planning and community delivery, and (2) that the experience of the individual in the community can be incorporated actively into the process of such planning. The chapter concludes with summary of preliminary insights from the project and a brief overview of future developments

    Cancer and renal insufficiency results of the BIRMA study

    Get PDF
    Background: Half of anticancer drugs are predominantly excreted in urine. Dosage adjustment in renal insufficiency (RI) is, therefore, a crucial issue. Moreover, patients with abnormal renal function are at high risk for drug-induced nephrotoxicity. The Belgian Renal Insufficiency and Anticancer Medications (BIRMA) study investigated the prevalence of RI in cancer patients, and the profile/dosing of anticancer drugs prescribed. Methods:Primary end point: to estimate the prevalence of abnormal glomerular filtration rate (GFR; estimated with the abbreviated Modification of Diet in Renal Disease formula) and RI in cancer patient. Secondary end point: to describe the profile of anticancer drugs prescribed (dose reduction/nephrotoxicity). Data were collected for patients presenting at one of the seven Belgian BIRMA centres in March 2006. Results: A total of 1218 patients were included. The prevalence of elevated SCR (1.2 mg per 100 ml) was 14.9%, but 64.0% had a GFR90 ml min 1 per 1.73 m 2. In all, 78.6% of treated patients (n1087) were receiving at least one drug needing dosage adjustment and 78.1% received at least one nephrotoxic drug. In all, 56.5% of RI patients receiving chemotherapy requiring dose reduction in case of RI did not receive dose adjustment. Conclusions: The RI is highly frequent in cancer patients. In all, 80% of the patients receive potentially nephrotoxic drugs and/or for which dosage must be adjusted in RI. Oncologists should check the appropriate dose of chemotherapeutic drugs in relation to renal function before prescribing. © 2010 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Contrast medium-induced nephropathy. Aspects on incidence, consequences, risk factors and prevention

    Get PDF
    Contrast media-induced nephropathy (CIN) is a well-known complication of radiological examinations employing iodine contrast media (I-CM). The rapid development and frequent use of coronary interventions and multi-channel detector computed tomography with concomitant administration of relatively large doses of I-CM has contributed to an increasing number of CIN cases during the last few years. Reduced renal function, especially when caused by diabetic nephropathy or renal arteriosclerosis, in combination with dehydration, congestive heart failure, hypotension, and administration of nephrotoxic drugs are risk factors for the development of CIN. When CM-based examinations cannot be replaced by other techniques in patients at risk of CIN, focus should be directed towards analysis of number and type of risk factors, adequate estimation of GFR, institution of proper preventive measures including hydration and post-procedural observation combined with surveillance of serum creatinine for 1-3 days. For the radiologist, there are several steps to consider in order to minimise the risk for CIN: use of “low-“ or “iso-osmolar” I-CM and dosing the I-CM in relation to GFR and body weight being the most important as well as utilizing radiographic techniques to keep the I-CM dose in gram iodine as low as possible below the numerical value of estimated GFR. There is as yet no pharmacological prevention that has been proven to be effective

    5-Lipoxygenase Metabolic Contributions to NSAID-Induced Organ Toxicity

    Full text link

    Human movement as a framework for developing computational representations of interactions

    Full text link
    University of Technology, Sydney. Faculty of Information Technology.NO FULL TEXT AVAILABLE. Access is restricted indefinitely. The hardcopy may be available for consultation at the UTS Library.NO FULL TEXT AVAILABLE. Access is restricted indefinitely. ----- Overview This thesis establishes a methodology for designing formal representations, visual languages, and visualisations of information about interactions. The conceptual modelling that enables the method for designing representations of interactions follows the elements of human movement. The representations of interaction process are modelled on bodily knowledge with the explicit objective of enhancing the semantics of the unfolding of interaction process. Interactions play a central role in our life. We interact with our colleagues and professional team members in the office, with our doctors during the visits to healthcare practices, with our lecturers and classmates in university. Through the interactions with the various computing systems that constitute our contemporary environment, we learn about it and achieve our goals. Interactions are situated at the very heart of the activities performed in many computerised domains, yet they remain poorly understood. Problem Formulation Each interaction constitutes a process that unfolds. This is the view the thesis takes. The way interactions unfold informs us about many aspects of the interactions themselves. Hence, in order to improve processes that rely on interactions, it is important to develop methods of encoding the way interactions unfold, capable of representing that information and allowing both humans and machines to utilise such information in order to improve interactions and, consequently, the processes that rely on them. For example, in health care, the overall process of patient treatment is a process that relies on interaction. It involves a series of interactions between patient and practitioner. If we consider such interaction in the context of the treatment process, then the overall treatment process will benefit. This research is about interaction, the interaction process, representation of such a process, and the manner in which bodily knowledge can be applied to the modelling of interactions. Interactions are complex, varied and dynamic. They are situated ‘transactions’ that derive meaning from the context within which they are embedded. The thesis addresses the problem of representing information about the interaction process that are machine usable. It seeks to develop a representation that allows capturing information about the unfolding of interactions. A central modelling issue is how to develop a representation of interactions that communicates meaning about the process without obscuring it. As it is undesirable to ‘obscure’ the representation of interaction the choice has been made to observe the act of interacting through the system of human movement. Human movement provides us with two important components for representing interactions; perception-action coupling and dynamics. This is suitable for the purposes because human movement by definition is a ‘reflective system.’ Through the output of this observation a representation of interaction can be defined. If the representation is modelled through the interacting processes that are integral to the representation of human movement interaction, then, by definition, the representation will partake of the same, or similar, characteristics as the system from which it was derived. There is then no a priori structure imposed on the construction of the interaction. Rather the phenomenon of interaction itself is the representation constructed. This methodology promotes a distancing of the work from the inherent subjectivity associated with content analysis approaches to representing interactions. Such models look to pre-defined selected features of interactions to provide definitions. In contrast, the approach in this thesis is to study the essential behaviour of interacting. Rather than starting with predefined notions of interaction, intuitive understandings of interaction based on experience form the initial basis. It is important to understand what interaction is, or what it is not, before any representation of interaction can be modelled. The general trend has been to consider interactions in terms of output, the results of the interaction, with little emphasis on the processes that construct interactions over time. There are problems with this approach as interactions are reduced to terms of output only and substantial part about them, the characteristics of the process of how they unfold, is not captured. Consequently the formalism developed in this thesis addresses this problem by capturing information about interactions that; - will improve the overall process, as it will allow us to extract knowledge about the way interactions unfold and incorporate that knowledge into the process; - will allow different views of that information to be accessed; - present, how such interactions unfold so that judgements can be made as to whether or not there has been a good communication. If provided with such profile of previous interactions in the beginning of a session, one can predict whether the current interaction unfolds well, and if not, based on the previous reflections, can respond with a strategy that can improve the interaction. The mentioned developments made in this thesis offer a range of contributions as summarised below. Thesis Contributions This thesis establishes a methodology for designing formal representations, visual languages, and information about visualisations of the interactions process. The conceptual modelling that enables the method for designing representations of interactions is inspired by Lakoff and Johnson’s approach to metaphors (Lakoff and Johnson, 1980). It allows expressing the target domain through the constructs of the source domain. In this thesis the source and target domains are human movement and interaction processes respectively. In the process the source domain is interpreted and formalised through well founded models of the system of human movement developed in movement observation science (Newlove & Dalby, 2004). From this are derived the constructs of elasticities and qualities. The behaviour of these two groups of constructs provides the shaping affinities for building expressions of interactions in the target domain. The mapping takes concepts that describe two frames of reference of human movement: (i) body position (the place of the body in space); and (ii) body dynamics (the motion that causes and expresses change from one position of the body to another), and uses their computational representations in the interactions domain. The set of constructs considered in this thesis include the following elasticities - the rising and sinking (RS-) elasticity and the contraction and extension (CE-) elasticity. The behaviour of elasticities describes the reciprocal effects between interacting parties and compactly expresses patterns of interaction. Below is a brief description of the thesis contributions. - Conceptual modelling of operating through the framework of metaphor between two physical systems, in particular human movement and interactions. The conceptual modelling establishes links between two physical systems by modelling one of them through the integral dimensions of the other. In the thesis, interactions as a system are modelled through the integral dimensions of human movement. - A methodology for modelling interactions. The methodology provides an analysis and transfer of the integral dimensions from one domain to another. Starting with observation of human movement, specifically over improvisational dance, it is then possible to derive concepts to model a formalism that behaves in a same manner. The methodology, called the InteractionSystem methodology, provides key insights of bodily knowledge; the way humans structure behaviour through bodily reasoning, association, and memory. From the observation of the phenomenon of interaction through human movement, the key constructs - elasticities and qualities - are derived. - A framework for interpreting interactions as a physical system. An interaction can be understood as a system through its components and the relations between them. This thesis has developed a multi-layer framework that provides key concepts of the system. - A language for expressing information about interaction process. This thesis contributes a visual language. The language proposed, the Kinetic InterActing language, (KIA) is composed of visual primitives, rules for composing expressions, and rules for interpreting these expressions. The KIA language is one possible instance of a visual language based on human movement constructs. - Design guidelines for visualisation of information about the interaction process. These guidelines are developed and followed in the design of visual language to reinforce and provide support about interactions based on KIA visual primitives and their behaviour. The guidelines support flexible, extendable, and modular features for visual languages. - A system of analysis. The system relates behaviour of visual primitives to visual patterns and the rules of their interpretation. The levels of analysis comprised from a number of different modes include: element and production analysis, range element and production range element analysis, and quality analysis. - Demonstration of the approach on case studies in healthcare. The demonstration of the language is presented over a number of case studies in the area of healthcare. To provide a demonstration of the interaction language the behaviour of the language elements in the computational representations are compared to expert evaluations over the same interactions. An overview of the computational processes supporting KIA is provided. Summary of the Results of the Demonstration of the Approach This thesis advances a methodology based on the premise that physical systems can be modelled as conceptual spaces. That is, modelling one system in action, interactions, through another system in action, human movement, is beneficial for improving the communicative value of interactions. The approach tackled a problem that is largely subjective and developed a formalism that provided the means to capture measures of a complex phenomenon. The use of metaphor has been extended in interpreting interactions through various components. The conceptualization and operationalisation of a framework for representing interactions provides analysis capabilities that through various measures generate in-depth semantics. The approach has been demonstrated with the development and application of a new visual language, KIA to a number of case studies in the domain of health. The results demonstrate the analysis of each case study based on KIA semantics. The feasibility of the language is demonstrated through comparison across the case studies and by comparing evaluation of interactions across five case studies by an expert and by KIA. The results support the hypothesis that representations of the interaction process provide benefit as to the dynamics of the interaction communicated through the behaviour of the constructs, elasticities and qualities. Consistency in semantics is achieved through the conceptual modelling of one system in action through another that inherently provides synergy. Through synergy a single command can set in motion a network of combined actions that constitute coordinated action in the system. Thus the achievement of the formalism is to communicate parameters of interaction through perceivable flow characteristics modelled as embodied information processes. The visual patterns provide access to information that can be utilised to improve the quality of the interaction. This thesis demonstrates that the major outcomes of the approach support the hypothesis; that to represent interactions so interacting parties can formulate meaningful interpretations of the unfolding of the interaction process is achievable through embodied information processes. Thesis Outline The thesis starts with an introduction to the problem formulation and the phenomenon of interaction. Chapter 1 introduces the issues of representing interactions and discusses the rational for the approach taken in this thesis. Chapter 2 provides the background for the approach taken and provides a critique of related work in the literature. The main components from the problem domain, interaction models, and interactions in healthcare are discussed. In Chapter 3, the methodology for deriving key constructs from human movement over contact improvisation video data is formulated and explained. Key constructs are sourced from the behaviour of the system under observation. Chapter 4 focuses on the modelling of interactions providing a system framework that covers high-level links of the key concepts involved in modelling interactions. Chapter 5 contributes a visual language, KIA. The KIA language is one possible instance of a visual language based on human movement constructs. Additionally design guidelines for visualisation of information about interaction process are discussed. Chapter 6 demonstrates the visual language through its application to a number of case studies in the domain of healthcare. Reliable evaluation is achieved by method of comparing expert and language evaluation for the case studies. Chapter 7 presents some concluding remarks and directions for future work. Issues with the approach taken are discussed. We identity the most promising areas for future application with, e-health, interactive environments, and virtual worlds. Suggestions are made as to how the approach and language developed in this thesis could be applied and extended. Key ideas are summarised at the end of each chapter and contributions both fundamental and practical are outlined

    Framing interaction through engagement in interactive open ended environments

    Full text link
    In this paper we present preliminary pilot study of how people's interactions can be characterized in open-ended environments through the concept of engagement. By open - ended environments we refer to physical spaces that construct content and associated semantics through non-didactic methods supportive of non - linear navigation. This work presents an overview of an approach to interactions as mapping human actions and their characteristics, through which behavior features can be identified. The interpretation is based on the extension of previous work, the Kinetic Inter-Acting System, that interprets, visualises and offers means for analysis of the interaction process between parties enabling visual reasoning about the quality of interactions. The approach is examined in the context of new developments in museums that perceives them as becoming creative and reflective agents in digital humanities. Examples are taken from a large public immersive exhibition that relies upon interaction delivered through various modalities for content assimilation and participant experience. © 2012 IEEE
    corecore